
Whitepaper

Rethinking DevOps as a
Graph for Real-Time
Troubleshooting.
Find connections to root causes and resolve incidents faster.

1



Executive summary
For enterprises adopting microservice architectures and continuous
deployments, it is crucial to e�ciently diagnose the root causes of
incidents to maintain service reliability and uptime. The scale and
complexity of distributed systems with microservices and continuous
deployments can hinder observability. It’s becoming increasingly
di�cult to trace an error back to the specific change that caused it.
How do we know if an operational issue is related to code,
infrastructure, or operational activity?

Every DevOps engineer naturally keeps a knowledge graph of all the
infrastructure and interconnected services - inside their heads. These
manual connections require familiarity with the system and
substantial experience in operation and management. But today’s
complex and dynamic architectures make it impossible to keep up
with all the changes around them. This cognitive load is compounded
by siloed monitoring tools that increase context switching.

This paper provides a look at CtrlStack, which allows DevOps teams
to visualize all data silos as one connected graph, bringing a better
representation of reality. This visualization can be used to improve
observability, simplify actions, and then automate troubleshooting
workflows to speed:

● Symptoms - What went wrong in the system?
● Diagnosis - What changed? What action can be taken?
● Resolution - What needs to be done?
● Reporting - What needs to be learned?

2



When it comes to DevOps, there are
several factors converging that are
forcing enterprises to rethink
observability and incident response:

01
DevOps teams are faced with growing business pressure to improve

service reliability and uptime as enterprises increasingly rely on

microservice architectures and CI/CD to enable continuous delivery of

new features and fast-evolving applications. There are tools to handle

microservices and CI/CD pipelines in isolation, but they are e�ectively

connected. Harnessing the power of those connections allows teams to

understand critical data relationships, locality and distance, so when

issues occur teams can focus on nearby connections.

3



02
With the scale and complexity of distributed systems with microservices,

cloud computing solutions, and continuous deployment, an incident could

trigger numerous alerts across services within the tech stack. To

accurately diagnose root causes that may be several steps away from the

initial observed anomalous service, RCA must be e�cient as you scale to

ingest larger volumes of data.

03
Traditional monitoring tools that focus on collecting data types - logs,

metrics, and distributed traces - is a siloed approach to observability.

Simply collecting these data types doesn’t provide faster or better

problem resolution. Many companies still struggle with knowing what data

is important and what’s not when it comes to real-time troubleshooting.

When we unify disconnected data, it becomes easier to visualize the state

of a system and how the pieces interconnect and interact.

4



04
75% of performance problems can be traced back to changes in the

environment; 67% of organizations can’t identify the relevant change.

Changes are made to the code or the cloud infrastructure, either directly

or through the infrastructure as code (IaC) templates, for a variety of

reasons. The risk of misconfiguration and performance issues increases

when these operational activities are not continuously monitored and

correlated across the stack.

What if we could automatically construct the dependency graph, connect

the operational data (performance metrics, logs, and operational

activities), and model the causal links between the data for real-time

root-cause diagnosis?

05
The knowledge gap between senior engineers and less experienced

engineers gets larger over time and makes real-time troubleshooting more

challenging. Documentation has a half-life measured in weeks or months

depending on release cadence. Less experienced engineers often don’t

know what data is important to a specific incident and lack the ability to

understand the links between cause and e�ect. Most companies which

deploy daily report that their engineers spend at least half of their time

troubleshooting and debugging.

5

https://www.dej.cognanta.com/2022/03/30/technology-innovation-spotlight-march-2022/
https://resources.scalyr.com/hubfs/Content%20Assets/REP_StateDevOpsObs_201806_1.pdf
https://resources.scalyr.com/hubfs/Content%20Assets/REP_StateDevOpsObs_201806_1.pdf


So where does this leave us?
Organizations are facing tough problems - from needing to gain meaningful insights

out of massive volumes of data to having visibility across vast systems and the

ability to fix issues quickly to avoid downtime. Many DevOps teams are stuck with

legacy monitoring tools that collect disconnected data, and are tasked to find

solutions that improve service reliability and uptime without disrupting their

workflow. This has led to an influx of vendors trying to reconnect the fragmented

data after the fact, using fragile machine learning techniques. Relying on machine

learning before building that connection/knowledge foundation does not allow

vendors to take full advantage of machine learning. Quality data as well as missing

relevant data, such as change events, are directly proportional to the performance of

a machine learning model.

On the other hand, having a DevOps graph that links all the infrastructure and

microservices together lets teams see hidden relationships and find correlations

quickly. In this paper, you’ll learn how CtrlStack harnesses those connections to

e�ciently connect cause and e�ect to speed symptoms, diagnosis, resolution, and

reporting for real-time troubleshooting. This means that teams can do their

investigation and get to the root cause within a few minutes, in just one click.

Leveraging a Graph for Incident
Response
The traditional method of looking at metrics, searching through logs, line by line, and

attempting to pivot o� of the data, can take several hours to determine the causes

and explain how the event occurred. There are hidden relationships in all the data

that can only be expressed through an engineer’s knowledge graph.

6



When we pull out the relationships from the data to form a real-time, dynamic

graph, the e�ects (symptoms) and related causes are more obvious. We want to

move from observing individual data points and then slowly connecting them in our

heads, to observing all the data points and connections in the same context. In

doing so, our process of identifying and resolving issues is faster and more accurate.

In modern IT environments, di�erent teams are constantly integrating new features,

new technologies, and renewing their stack. When changes are made to improve

application performance or to harden systems, they often introduce new pathways

to failures. Although nothing replaces earned experience and expertise, tools that

help to improve an engineer’s ability to pivot and diagnose issues would significantly

cut the problem resolution time.

Use Case: Service Fault at Google

The following use case from Google illustrates how incident response works in

practice. This example shows what happens when a team of experts tries to debug a

system with many interactions, and no single person can grasp all the details. This

postmortem report shows how an incident with a service fault at Google could have

been managed better with a DevOps graph. Even with several teams of experts, the

GKE CreateCluster outage took 6 hours and 40 minutes to fix.

Context

Google Kubernetes Engine, or GKE, is a Google-managed system that creates, hosts,

and runs Kubernetes clusters for users. This hosted version operates the control

plane, while users upload and manage workloads in the way that suits them best.

When a user first creates a new cluster, GKE fetches and initializes the Docker

images their cluster requires. Ideally, these components are fetched and built

internally so we can validate them. But because Kubernetes is an open source

system, new dependencies sometimes slip in through the cracks.

7

https://sre.google/workbook/incident-response/


Incident

An on-call SRE for GKE declared an incident when she verified CreateCluster probe

failures were occurring across several zones; no new clusters were being

successfully created.

Here’s the timeline of the incident:

● 7 a.m. (Assessed impact). On-call SRE confirmed users were a�ected by the

outage.

● 9:10 a.m. So far, the incident responders knew the following:

○ Cluster creation failed where nodes attempted to register with the master.

○ The error message in cluster startup logs indicated the certificate signing

module as the culprit.

○ All cluster creation in Europe was failing; all other continents were fine.

○ No other GCP services in Europe were seeing network or quota problems.

● 9:56 a.m. (Found possible cause). 2 team members identified a rogue image from

DockerHub

● 10:59 a.m. (Bespoke mitigation). Several team members worked on rebuilding

binaries to push a new configuration that would fetch images from a di�erent

location.

● 11:59 a.m. (Found root-cause and fixed the issue). SRE on-call disabled GCR

caching and purged a corrupt image from the European storage layer.

Google’s Diagnosis Approach

The team had several documented escalation paths which helped to quickly get

domain experts to get onboard. Logging was insu�cient for diagnosis. In fact, digging

into logs and finding the error message at the start distracted the team. The

corruption on DockerHub was not the real issue. A handful of first responders

pursued their own investigations without context and coordination. Without seeing

the DevOps graph that tracks all the system changes through a single lens, a lot of

time and resources were wasted jumping between tools and tabs.

8



A Better Approach:
Incident Diagnosis with a DevOps Graph

In this case, the responders would have benefitted from a platform that connects

cause to e�ect to find the root cause quickly. This platform would present the

DevOps graph in a topology view that shows the connections/relationships between

the entities such as the Docker image running in a Kubernetes cluster that’s pulled

from DockerHub, or in this case, Google Container Registry (GCR). You would also see

where in the timeline did the Docker configuration change and what changes were

made. Being able to see the configuration changes and the relationships between

the entities, in relation to the incident, in one place would have expedited the

diagnosis and resolution of the incident.

With a platform like CtrlStack, all the actions taken by team members in the system

are automatically captured. This ensures anyone jumping onboard will have the right

context, can see what has been done, when, and by who. Nothing will be lost in

translation. Most importantly, teams don’t have to spend more time writing an epic

post-mortem after having spent almost 7 hours resolving the issue.

Conclusion

A DevOps platform that connects all data, including change data, and relationships

can significantly enhance teams’ troubleshooting experience. When information is

provided in context, and incident triage can be largely automated through a

connected graph, teams can troubleshoot in real time.

With CtrlStack, moving beyond legacy solutions no longer needs to be an

intimidating idea. CtrlStack uses a native graph approach to represent the “data

between the data” - the relationships between metrics, events, logs, and traces. This

means teams can continue to use their existing operational data without the mental

burden of tracking how infrastructure and services interconnect, and what changes

have been made in their environment. Teams get the added benefit of seeing the

9



impact of a change - code, configuration or action - and quickly trace backward to

get to the root cause of the problem.

Learn more about how CtrlStack helps troubleshoot cloud applications in real time

here.

About CtrlStack

CtrlStack provides incident orchestration to prevent downtime and identify

changes before they impact customers. The platform unifies disconnected

data, teams, and tools to connect cause to e�ect in DevOps. Harnessing the

power of those connections, CtrlStack enables automated troubleshooting

and serves as the system of record for change management. For more

information, visit ctrlstack.com or join the conversation on LinkedIn, Twitter

and YouTube.

10

https://www.ctrlstack.com/
https://www.linkedin.com/company/ctrlstack/posts/?feedView=all&viewAsMember=true
https://twitter.com/CtrlStackHQ
https://www.youtube.com/channel/UCwj7_wcADfMxyeVfOyCKoqw/featured

