ctristack

Whitepaper

Introducing CtrlStack: A
Better Way to Observability.

Whether you’re just starting with observability or further along in your process, the main goals
across organizations are better service reliability, improved customer satisfaction, and faster
troubleshooting - to keep pace with development speed. When delivering customer experiences
from the cloud, reducing Mean Time to Recovery (MTTR) is a key driver for better observability.
However, traditional monitoring solutions fall short. A 2022 study by Splunk found that the
median downtime (MTTR) lasts more than 5 hours. This isn’t good enough. It is a critical and
expensive operational problem we’re facing today.

The problems we solve.

The traditional method of looking at metrics, combing through logs, and attempting to
pivot off of the data, can take several hours or days to determine the causes and
explain how the event occurred. This is ineffective for troubleshooting cloud
applications, and is a result of these lingering problems:

e Monitoring tool sprawl - Hunting down relevant data in multiple tools
requires expertise in different Uls and query languages, and interpreting
data returned in various formats.

e Disconnected data - Operational data used for observability (metrics, logs,
traces, events) is helpful and necessary, but current tools don’t allow us
to view them as connected sources of information.

e Fragmented knowledge - Every DevOps engineer keeps a knowledge graph
of all the infrastructure and interconnected service inside their heads; this
graph is fragmented and takes time to learn and document, and mental

power to retain.

While legacy monitoring tools are quickly evolving into “observability” tools
by bolting on access to full datasets including logs, metrics, distributed
traces, and events, the problems remain unresolved. The challenge is that
operational data isn’t just disconnected; it’s dynamic and growing as the
applications and the supporting infrastructure change. Another challenge is
that the vast majority of operational incidents (75%) are caused by
intentional changes - from deploying code, to changing configuration files, to
provisioning services. Most downtimes are spent looking for the change
culprit, and most organizations can’t find that change. Why not fix the
problem at its core and provide a solution that links performance issues to

change - one that actually connects cause to effect in real time?

https://www.splunk.com/en_us/form/state-of-observability.html

Why CtriStack?

Backed by top-tier investors and an engineering team with extensive experience in
the monitoring and observability space, CtrlStack’s mission is to unify DevOps tools
and knowledge to escalate software’s impact. Starting with a clean slate, the team
took a first-principles approach to troubleshooting for the fastest way to “why.”

CtrlStack is the first platform that brings a unified experience for connecting cause
to effect as changes happen. DevOps engineers can proactively track code
deployment and configuration changes in a unified timeline, and connect those
changes to operational outcomes - metrics, logs, and events. When an incident
occurs, teams can trace backward in the timeline to investigate the cause(s) quickly.
With a visual graph of the application and the infrastructure it sits on that can
model cause and effect, teams no longer need to process the hidden connections in
their heads. Sharing and documenting knowledge consistently across teams
becomes effortless. Through these capabilities, CtrlStack lets teams add real-time
change impact and root cause diagnosis into their DevOps pipeline.

Add Change Impact and Root Cause Diagnosis into your DevOps Pipeline

DevOps & SRE Developers Change & Release Manager
Jj'a_]
Resolve issues faster with Proactively troubleshoot Reduce risks and deliver
snapshots for every change and debug code changes reliable services at scale

CtrlStack Graph-Based
Troubleshooting.

The following diagram shows the key components of the CtrlStack
architecture, including data collection, the graph engine that connects
disconnected data, data modeling that maps changes to operational

outcomes, and a unified DevOps experience for real-time troubleshooting.

COLLECT UNIFY, MAP, VISUALIZE TROUBLESHOOT
Disconnected Data Operational Data and Activities In Real Time
Metrics)
Graph Graph Data Data 1-Click
E Engine Model Visualization Dashboards
vents
Logs Unified
< cChange DevOps & SRE
Timeline
Traces
%ﬂ
App/Infra Change . < . Change Developer
Events Impact
Relationship Cause and
Cl/CD Change System of Effect Nericrk
Events Record Connection @ T:pol‘;;y Change Manager

Incident Events

Real-Time
Graph Construction.

In order to connect cause to effect and speed MTTR, DevOps teams need the ability
to identify the cause of issues and see the blast radius of a system change. To
accomplish this, incident response technologies need to construct a real-time graph
of the application, infrastructure, and 3rd party services and update it every few
seconds to incorporate new data and structural changes. While graph structures can
be represented in many different storage layers, including SQL-based relational
databases, a dedicated graph database offers many advantages - including
performance and extensibility.

Most relational databases are “row stores”, optimized for storing and accessing
records where many fields within each record will be accessed together.
Row-oriented databases are sometimes contrasted with “column stores”, which are
optimized for storing/querying data by fields (across multiple records). Graph
databases are a third paradigm which are optimized for storing/querying data across
multiple relationships between records.

With a typical RDBMS, representing a relationship between two existing tables
typically requires a third associative entity (“join”) table, with references to the
primary keys of each target table, and with its own indexes. As that intermediate
table grows, the performance suffers proportionally. Graph databases deliver higher
performance for typical graph operations by storing relationships directly with each
node, which can point directly to other nodes (this is known as “index-free
adjacency”).

Graph databases also provide extensibility of new types of nodes, relationships, and
graph architectures without any DDL schema updates. This extensibility is a must
when dealing with modeling software and service systems, which are constantly
evolving at both the macro scale (new types of technology) and at the micro scale
(the relationships and connections of a particular system changing from one
snapshot to the next, just a few seconds later).

The CtriStack
Native Graph Approach.

Metrics, events, logs, and trace (MELT) data that are collected by traditional
observability tools are not sufficient for representing a real-time graph of a DevOps
environment. The relationships between these raw data points - the data between
the data - cannot be represented accurately with MELT and traditional tools. Even
traces (which resemble graph relationships) are constrained to network requests,
not other non-request network traffic, much less non-network dependencies -
such as the critical relationships between a process running in a container running
on a node in a Kubernetes cluster.

A common legacy technique to represent relationships is to use tags, such as
“cluster=west01“ or “service=web-api”. However, tags are a poor approximation to a
graph database; they have to store (and duplicate) the full list of connections with
every copy of every data point, and cannot be easily or quickly traversed beyond a
single hop. Tags make every data point into an effective node with slow-lookup
relationships to other nodes.

Real-Time
Relationship Mapping.

CtrlStack uses a native graph database to represent “the data between the data” -
the relationships between MELT data. This enables every cloud application to be
represented as a graph of components and their relationships and interactions. A
native graph database approach achieves high performance and allows each data
type (log, metric, etc) to be associated with a given node using a single relationship,
leveraging all of the rich relationship data already existing with that node.

CtrlStack uses a variety of agents to construct the real-time system graph:
e Cloud Agent - Queries the raw inventory of entities/services running in a

given account, as well as the cloud-native logs and metrics observability
data available (AWS only).

e Cloud Agent - Host Agent: Runs as a process within a Linux operating
system, and is optimized for EC2 instances within AWS. It queries the
process table and helps to construct a network graph.

e KB8s Agent - Runs as a Daemonset within a Kubernetes or EKS cluster, and
collects detailed K8s-specific information not available from the Cloud
APls.

e Service Agent - Handles 3rd-party service providers, such as GitLab,
Split.io, LaunchDarkly, Snowflake, and Databricks - these services form an
extended portion of your system, and are directly connected to the

internal system topology.

The different agents pull different types of data (both local subgraphs and also
non-graph data, such as metrics and properties) back to the CtrlStack modeling
engine, which assembles and identifies matching nodes across different subgraphs
to tie them together into the canonical supergraph. This supergraph is assembled
from scratch every few seconds, so that changes can be recognized quickly for
operational control, and to ensure a high-resolution record of historical graphs for
troubleshooting, root-cause analysis, and post-mortem reporting. CtrlStack stores
these historical snapshots in AWS Elastic File System (EFS) and allows teams to
retrieve them programmatically and through the UX.

Actionability in
Troubleshooting Flows.

CtrlStack provides two out-of-the-box troubleshooting flows to get new users
started quickly: change impact and root-cause analysis. These read-only flows were
designed to safely introduce users to CtrlStack so the ability to take actions from
these flows are disabled.

While these read-only flows will deliver immediate value to customers, they are just
the beginning for accelerating incident response. To enable users to act on the data
available in the graph, CtrlStack attaches the actions for each entity to the
corresponding node. For example, every EC2 instance node within CtrlStack has both
relevant metrics attached to it as well as actions such as Terminatelnstance. To take
actions on any entity, users can easily navigate to the dedicated topology pane from
the troubleshooting flows/panes.

Fast Data Query for
Faster Troubleshooting.

CtrlStack’s powerful StackQL Language allows teams to query the graph data
structure efficiently. By combining graph query operations with typical log/metric
query patterns, users can query current snapshots and historical snapshots to
compare current with previous system states for faster investigation. Internally,
StackQL, a python library, is transpiled to Clojure, which assembles the data sources
across the graph database, metric store, logs, and events management into a single
JSON payload for display and/or processing.

System of Record
for Change Management.

DevOps teams today lack a centralized management hub for system changes that
happen in production. This system of record is needed to show teams when, where
and why changes are made, and how those changes impacted operations. In fact, a
recent survey found that an overwhelming 76% of all outages can be traced back to
changes in a system’s environment. Without the ability to track changes in
production, teams cannot correlate changes with incidents and outages.

CtrlStack helps DevOps teams manage a wide variety of operational activities and
sources of changes to reduce risks, track change impact, and find root causes of
production issues fast. CtrlStack integrates change events from many different
sources and then stores them in a common format for analysis. Teams can quickly
explore and filter this data using a real-time timeline and a network topology - all in
one place.

The following are some of the sources of change events currently managed by
CtrlStack.

Events Description

AWS CloudTrail CloudTrail records users activity and APl usage in
AWS services. When a user or external system
makes a call to an AWS API in your AWS account, a
CloudTrail event is emitted.

AWS EventBridge EventBring is a serverless event bridge that
receives events from AWS Services, including
CloudTrail, as well as your own applications and
micro services.

Using EventBridge, a user can configure their
internal EventBridge service buses to route events
to CtrlStack’s EventBridge Service Bus (all within
AWS). This allows CtrlStack to analyze the
firehouse of events occurring within your AWS
environment for change impact analysis.

Kubernetes Events Like AWS, a moderately sized Kubernetes cluster
can emit a firehose of events. Events are emitted

https://www.dej.cognanta.com/2022/03/30/technology-innovation-spotlight-march-2022/

Config Files

Terraform Files

PagerDuty Events

in Kubernetes when state changes, which can be
frequent in an actively developed environment.

When changes occur in your Kubernetes cluster,
the emitted events are tied into CtrlStack’s
knowledge graph to show the impact of
kubernetes events on the Kubernetes cluster as
well as externally connected system (ie. AWS).

CtrlStack monitors file systems and collects and
stores events that indicate key files change on
disk.

Changes to configuration files can be a cause of a
failure (ie, service no longer starting). Capturing file
change events and presenting them immediately to
a DevOps engineer investigating a problem can
significantly reduce the time required to identify
the root cause of a problem.

Terraform is widely used to make infrastructure
changes. Changes to terraform files trigger calls to
AWS APIs, which then emit CloudTrail events.

CtrlStack captures changes to terraform state,
associates that change with a logical entity and
then ties those changes to impacted events.

This allows for engineers to identify a change in
infrastructure and trace it back through the AWS
API call (CloudTrail) to the terraform change that
triggered it.

CtrlStack integrates with PagerDuty to collect
events that are usually indicative of a problem in
production. If the events have information pointing
to the infrastructure in place, CtrlStack can tie
these events into its root cause analysis system.

This provides complete symptom traceability,
allowing users to navigate from a pager duty event
to the impacted infrastructure, to the AWS API
call, to the changed terraform file, and back to the
git commit.

10

SSM/Terminal Commands

CI/CD Code Deploys

Many systems running in non-container
environments are managed via SSM and terminal
access.

CtrlStack captures the commands that are entered
by a user within SSM and/or a terminal and
collects these commands as events.

Tying the commands to events allows CtrlStack to
connect SSM commands with impacted
infrastructure as well as AWS/K8s API calls (which
trigger events).

CtrlStack monitors your Git repositories and
collects events when new commits are made.

Many times, new commits will trigger CI/CD
pipelines which can lead to deployments that
negatively impact your infrastructure. CtrlStack
captures these CI/CD pipeline events which can be
traced back to Git commits, and displays the
changes in the code. CI/CD pipeline events can
also be traced forward to view impacted
infrastructure and other related events that were
triggered as a side effect of code deployment.

11

Change Impact Dashboard.

Intentional changes, such as committing and deploying new code, are oftentimes
accompanied by change anxiety. The Change Impact dashboard provided by
CtrlStack transforms anxiety into confidence by delivering a simple, yet powerful
way for engineers to start with a potential cause (ie - deploying new code), identify
associated events, and be presented with critical troubleshooting information should
any negative effects occur.

The Change Impact dashboard can be launched from an associated commit found in
the timeline.

¢ Pushed 1 committobra.. X (+]

O M H

¢ gitlab 10:50 AM

Pushed 1 commit to branch master (...

@ The most relevant event is that a commit was made by jj@ctrlstack.com

Impacted metrics ¢

JJ Pushed 1 commit to branch ma...

Impacted infrastructure
Commit information
Event Volume Changes

W g 10
(o] Pipeline #670065767 triggere... ;5

Related Pod Logs [web-apps] deployment/rest: Scaled up rep|

The Event Timeline, which displays connected events to your code deploy, provides a
clear path of activity that occurs from deployment to production readiness.
Developers are able to quickly spot expected activity, such as a git commit triggering
a pipeline build or scaling of replica sets in their Kubernetes deployment. More
importantly, they will see critical, potentially unexpected activity such as their pods
going into crashloopbackoff.

@ Pushed 1 committobra.. X (+]
Pushed 1 commit to branch master (intro bug) The most relevant event ...
The most relevant event is that a commit was made by jj@ctrlstack.com at 2022-10-18 08:49:52-07:00 which produced a new image.
L ok

®

Commit information ® 42 [web-apps] pod/rest-677845cbff-6h68w: Back-off restarting failed container

Event Volume Changes A
a1

Related Pod Logs

When an unexpected error occurs, engineers attempt to find and follow a trail of
breadcrumbs in the hopes that it leads to the cause(s). The time it takes to
investigate these clues, which often come in the form of metrics, logs, and reviewing

12

commit versions, only causes the change anxiety to grow. The Change Impact
dashboard generates critical clues in a unified way so it’s easy to identify the
cause(s) and plan the proper steps for resolution. These clues begin with Impacted
Metrics.

Impacted?

—

11:30

kubernetes_deploymel
| avg(kubernetes_pod_memory_usage{namespace="wi s cte | kubemetes_deployment_pod_errors{_lid="arm:aws:eks:us-west-2:604808840791:cluster/eks-demo-cluster-

i AN NI A
3 A A
10:45 0

1AM 1:15 11:30

|2 sum(rate(kubernetes_container_restarts{namespace="web-apps”,deployment="rest’})) is impacted

w1 /SVVVV A ANAAN

10:45 1AM 1:15 11:30

Observing metrics behavior post-deployment is a common way to validate whether a
recent deployment has any potential side effects to investigate. However, the ability
to quickly diagnose health via metrics behavior is slowed down due to several
problems:

e Needing to know which metrics to observe
e Finding where they need to be observed from
e Human error potentially missing anomalous behavior.

Through real-time relationship mapping, the Change Impact dashboard is able to
immediately identify which metrics to observe, and does anomaly detection on those
metrics automatically. Each metric with anomalous behavior is flagged and displayed
as their own chart widget so users can observe the behavior change directly.

The Impacted Infrastructure helps to identify which components in a stack are
associated with the selected commit.

Deployment
rest

“r
Pod Pod Pod Pod
rest-74788988fc-pbica rest7d788988fc-gxmr rest-54c5bi7c8fxabr6 rest-54c5bi7cEFbmIaD

Container Container Container Container
rest rest rest rest

13

Logs can also be a helpful tool when debugging a code commit. A particular log
message appearing and how often it appears can potentially point to the root cause.
With Related Pod Logs, the Change Impact dashboard delivers this helpful
information directly next to the Commit Diff information, enabling users to spot an
issue and review the code commit in a unified way.

= Log Viewer
ontainerinsigh
100000
50000
1AM

Timestamp

2022-10 40:07.000Z

304", "container_im

40:07.0032

@ Commit Diff

Split Unified

extra optimizations and stuff
zap.S().Infow("hit goroutine again")
defer wg.Done() 248 zap.S().Infow("reached")
defer wg.Done()
ata, err i= d yContext(250 ta, err := db.
ctix,
"SELECT cou) as cnt from LY. "SELECT COUNT(1) as cnt from

14

Root Cause Analysis
Dashboard.

The Change Impact flow described above connects a known cause to unknown
effects. CtrlStack’s Real-Time Troubleshooting flow is a similar capability which goes
in the other direction, from a known effect/symptom to the unknown, underlying
cause(s). Because about two-thirds of unplanned downtime is spent trying to
identify the root cause of the issue, this capability is especially leveraged during
incidents. If Change Impact answers the “How” (does this change affect the system),
Real-Time Troubleshooting answers the “Why” (did this behavior occur), tracing
behavior back to change event(s) for faster remediation.

Like the Change Impact flow, Real-Time Troubleshooting uses the cause/effect graph
tying together operational data to hone in on the most likely causes (based on which
components directly affected other components), not simply the most coincidental
causes (based on which events happened around the same time).

There are two ways to trigger the Real-Time Troubleshooting flow: from a metric
chart, or from an event in the event timeline.

Metric charts often show unusual or unexpected behavior that require deeper
investigation; for example, a spike or a trend in a typically stable metric, or a
baseline change. In this case, the unusual behavior can be identified and selected
with a right-click:

deployment_pod_errors

15

deployment_pod_errors

20

f Investigate Metric

Send to CLI

U

Clicking “Investigate Metric” will immediately trigger the real-time
troubleshooting workflow in a new tab, allowing you to view the history of
changes leading up to the behavior. For example, in the case below, a
commit triggered a build pipeline, which then deployed images to the cluster,
resulting in the metric change (deployment_pod_errors) that began the

investigation.

8% Servicesoverview X | Metricinvestigation X @
Metric investigation
There was a change in the specification of Deployment "rest" at Oct 19, 2022, 12:18 PM. A new image started being used around Oct 19, 2022, 12:23 PM.
Selection details
Relevant change events
Events on connected workloads

Inflection points in the selected time range

Relevant logs

Selection details

I/ kubernetes_deployment_pod_errors 131 Impacted infrastructure at Oct 19, 2022, 12:36 PM

3 Legend ~
@ Added

@ Updated
@ Removed

restbenSrieoliosan | restesefdsrsdT isee
GFashioogackDf | Fexth -

The Metric Investigation workflow also shows the impacted machines in a
topological view (at bottom right), as well as the commit diff itself, detailed

pipeline information, and relevant log streams.

16

Relevant events: details below

B Change in [web-apps] deployments/rest Oct 19, 2022, 12:18 PM [25566526-89a8-4830-bb87-6f29dcbff05388arn:aws:eks: /' changes @1666207121262

Change in [web-apps] deployments/rest

Timestamp | 10/19, ,19:18:41

+++ after

annotatio;

Description | Change in [web-apps] deployments/rest

Type change

annotations:

B Image changed i rest Oct 19, 2022, 12:23 PM [image-change-1666207380000-arn:aws:eks:us-west-2:604808840791:clu + Image change at Oct 19, 2022, 12:23 PM [e720cb7c-4945-4c8b-a65b-65fb08f1131]

Image changed in rest

Timestamp | 10/19/2022,19:23:00
Deployment
Description | Image changed in rest rest

I Legend ~
Type chang

Added
Updated
Removed

Logs
= Log Viewer
{($.kubernetes.pod_name

/aws/containerinsights/eks-demo-cluster/application ter: {($.kubernetes.pod_name = "rest-66b57f6cf7-954ht’) || ($.kubernetes.po... From: 10/19/2022,11:56:08
43985 X To: 10/19/2022,12:54:36

2000

Timestamp Message

2022-10-19T19:18:16. ip-10-8-9-198.us-west-2.compute.internal-application.var.log.containers.rest-66b57f6cf7-954ht_web-apps_rest-
29f3642d4352¢2f72ac98b656df93c796972668a9e32fd74c5b81c8c05c641. log {"log":"2022-10-19T19:18:16.623Z\tINFO\ttelemetry/adapter.go:235\treporting internal metrics 1¢
seconds\n", "stream":"stderr”, "kubernetes" :{"pod_name": "rest-66b57f6cf7-954ht", "namespace_name b-apps”, "pod_id" : "6a3cc2aa-1864-4278-2819-e7845884ad75", "host" : "ip
10-8-9-198.us-west-
2.compute.internal”,"container_name”:"rest","docker_id":"29f3642d4352c2f72ac98fb656df93c79697a668a9e32fd74c5b81c8CO5c641", "container_hash" : "604808840791.dkr . ecr.us
west-2.amazonaws . com/eks-demo-rest-servicedsha256: c9b134aed365F9a816f3df7bbaef66b4scaf36895232b449e5c7a34db28a7754" , "container_image” : "604808840791.dkr . ecr.us-west-
2.amazonaws . com/eks-demo-rest-service:latest"}}

2022-10-19T19:18:16.66 ip-10-8-9-198.us-west-2.compute. internal-application.var.log.containers.rest-66b57f6cf7-954ht_web-apps_rest-
29f3642df4352¢2f72ac98b656df93¢796972668a9e32fd74c5b81c8c05c641. log {"log":"2022-10-19T19:18
0.0.0.0:8081\n", "stream”: "stderr", "kubernetes”:{"pod_name" : "rest-66b57f6cf7-954ht
€7845884ad75", "host”: "ip-10-8-9-198 .us-west-
2.compute. internal","container_name”:"rest","docker_id": "29f3642df4352c2f72ac98fb656df93c79697a668a9e3 :"604808840791.dkr. ecr.us
west-2.amazonaws . com/el c b1342e0365f9a816f3df7bbaef66b44caf36895232b449e5c7a 0791.dkr.ecr.us-west-
2.amazonaws . com/eks-demo-rest-service:latest"}}

2022-10-19T19:18:26.641Z ip-10-8-9-198.us-west-2.compute.internal-application.var.log.containers.r
29f3642df4352¢2f72ac98b656df93c796972668a9e32fd74c5b81c8c05c641.log {” :"2022/10/19 19:18:26 connected to Wavefront proxy at address: -agent.ctristack-

agent.svc.cluster.local :2878\n" . "stream”: "stderr” . "kuhernetes": {"nod name":"res 6cf7-954ht" . "namesnace name": "weh-anns”. "nod "6a3cclaa-1R64-477R-aR19~

All of this information can be retrieved in seconds during the incident itself
to assist in real-time remediation, or after the fact to help flesh out a

post-mortem analysis.
Event Investigations are initiated in a similar way by clicking the ‘Investigate

Event’ option within the 3-dot hamburger menu at the top-right of each

event.

17

% Kubemetes aWs view EKS Cluster in AWS

|

FailedScheduling

aWs view Pod In AWS

S —

Filter by this Event Type
aws aws 10:2
Filter by Event Target
EC2 State Manager Instance Association St...

@ nvestigate Event

Get Sharable Link
aws aAws 10

-

EC2 State Manager Instance Association St... f SR AR bRt o

This flow will also open a new tab in the primary window, showing the
initiating event as well as previous events which have a causal relationship

with that event.

|~ EventRoot Cause X ©

Event Root Cause

Done

Selection details
Relevant events
Find change in events volume

Relevant events between Nov 1, 2022,
7:48 AM and Nov 1, 2022, 8:38 AM

Relevant events between Nov 1, 2022,
7:18 AM and Nov 1, 2022, 8:08 AM

Generate summary

Selection details

[kube-system] pod/filebeat-bzI5z: 0/10 nodes are available: 1 Too many pods, 1 node(s) had taint {node.kubernetes.io/unreachable: }, that the pod didn't tolerate, 8 node(s) di...

18

About CtrlStack

CtrlStack provides incident orchestration to prevent downtime and identify
changes before they impact customers. The platform unifies disconnected
data, teams, and tools to connect cause to effect in DevOps. Harnessing the
power of those connections, CtrlStack enables automated troubleshooting
and serves as the system of record for change management. For more
information, visit ctrlstack.com or join the conversation on LinkedIn, Twitter
and YouTube.

19

https://www.linkedin.com/company/ctrlstack/posts/?feedView=all&viewAsMember=true
https://twitter.com/CtrlStackHQ
https://www.youtube.com/channel/UCwj7_wcADfMxyeVfOyCKoqw/featured

